EE 330 Lecture 39

Digital Circuits

Sizing of Devices for Logic Circuits
Ratio Logic
Other MOS Logic Families
Propagation Delay - basic characterization
Device Sizing (Inverter and multiple-input gates)

Fall 2023 Exam Schedule

Exam 1 Friday Sept 22 Exam 2 Friday Oct 20 Exam 3 Friday Nov. 17 Final Monday Dec 11 12:00-2:00 p.m.

Inverter Transfer Characteristics of Inverter

 Pair for THIS Logic Family

Review from last lecture

Transfer characteristics of the static CMOS inverter (Neglect λ effects)

From Case 3 analysis:

$$
V_{D D}+V_{T p}
$$

$$
\mathrm{V}_{\mathrm{N}}=\frac{\left(\mathrm{V}_{\mathrm{Tn}}\right)+\left(\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{Tp}}\right) \sqrt{\frac{\mu_{\mathrm{p}}}{\mu_{\mathrm{n}}} \frac{\mathrm{~W}_{2}}{\mathrm{~W}_{1}} \frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}}}{1+\sqrt{\frac{\mu_{\mathrm{p}}}{\mu_{\mathrm{n}}} \frac{\mathrm{~W}_{2}}{\mathrm{~W}_{1}} \frac{\mathrm{~L}_{1}}{L_{2}}}}
$$

Sizing of the Basic CMOS Inverter

Most logic families require using the device sizing variables to determine acceptable V_{H} and V_{L} values

The characteristic that device sizes do not need to be used to establish V_{H} and V_{L} logic levels is a major advantage of this type of logic !!

How should M_{1} and M_{2} be sized?
How many degrees of freedom are there in the design of the inverter?

How should M_{1} and M_{2} be sized?

How many degrees of freedom are there in the design of the inverter?

$$
\left\{\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~L}_{1}, \mathrm{~L}_{2}\right\}
$$

4 degrees of freedom
But in basic device model and in most performance metrics, W_{1} / L_{1} and W_{2} / L_{2} appear as ratios

$$
\left\{W_{1} / L_{1}, W_{2} / L_{2}\right\}
$$

effectively 2 degrees of freedom

How should M_{1} and M_{2} be sized?

$\left\{W_{1}, W_{2}, L_{1}, L_{2}\right\} \quad 4$ degrees of freedom Usually pick $L_{1}=L_{2}=L_{\text {min }}$
That leaves $\quad\left\{W_{1}, W_{2}\right\} \quad$ effectively 2 degrees of freedom
How are W_{1} and W_{2} chosen?
Depends upon what performance parameters are most important for a given application!

How should M_{1} and M_{2} be sized?

Pick $L_{1}=L_{2}=L_{\text {min }}$

One popular sizing strategy:

1. Pick $W_{1}=W_{\text {MIN }}$ to minimize area of M_{1}
2. Pick W_{2} to set trip-point at $\mathrm{V}_{\mathrm{DD}} / 2$

Observe Case 3 provides expression for $\mathrm{V}_{\text {TRIP }}$

Thus, at the trip point,

$$
\frac{V_{\mathrm{ov}}}{2}=\frac{\left(V_{\mathrm{Tn}}\right)+\left(V_{\mathrm{oo}}-V_{\mathrm{Tn}}\right) \sqrt{\frac{\mu_{\mathrm{o}}}{\mu_{\mathrm{n}}} \mathrm{~W}_{2}} \mathrm{~W}_{1}}{1+\sqrt{\frac{\mu_{\mathrm{o}}}{\mu_{\mathrm{n}}} \frac{W_{2}}{W_{1}}}}
$$

How should M_{1} and M_{2} be sized?

$$
\text { Pick } L_{1}=L_{2}=L_{\min }
$$

One popular sizing strategy:

1. Pick $W_{1}=W_{\text {MIN }}$ to minimize area of M_{1}
2. Pick W_{2} to set trip-point at $\mathrm{V}_{\mathrm{DD}} / 2$

Observe Case 3 provides expression for $\mathrm{V}_{\text {TRIP }}$
(solution continued)

$$
\frac{\mathrm{V}_{\mathrm{oD}}}{2}=\frac{\left(\mathrm{V}_{\mathrm{Tn}}\right)+\left(\mathrm{V}_{\mathrm{oo}}-\mathrm{V}_{\mathrm{Tn}}\right) \sqrt{\frac{\mu_{\mathrm{p}}}{\mu_{\mathrm{n}}} \frac{\mathrm{~W}_{2}}{\mathrm{~W}_{1}}}}{1+\sqrt{\frac{\mu_{\mathrm{p}}}{\mu_{\mathrm{n}}} \frac{\mathrm{~W}_{2}}{W_{i}}}}
$$

solving for $\sqrt{\frac{\mu_{\rho}}{\mu_{n}} \frac{W_{2}}{W_{1}}}$ we obtain

$$
\sqrt{\frac{\mu_{\mathrm{p}}}{\mu_{\mathrm{n}}} \frac{\mathrm{~W}_{2}}{W_{1}}}=\frac{\mathrm{V}_{\mathrm{Tn}}-\frac{\mathrm{V}_{\mathrm{od}}}{2}}{-\frac{\mathrm{V}_{\mathrm{od}}}{2}+\mathrm{V}_{\mathrm{Tn}}}=1
$$

thus

$$
\frac{\mathrm{W}_{2}}{\mathrm{~W}_{1}}=\frac{\mu_{n}}{\mu_{p}} \quad \Longrightarrow \mathrm{~W}_{2}=\frac{\mu_{n}}{\mu_{p}} \mathrm{~W}_{\mathrm{MN}} \simeq 3 \mathrm{~W}_{\mathrm{MN}}
$$

How should M_{1} and M_{2} be sized?

Pick $L_{1}=L_{2}=L_{\text {min }}$
One popular sizing strategy:

1. Pick $W_{1}=W_{\text {MIN }}$ to minimize area of M_{1}
2. Pick W_{2} to set trip-point at $\mathrm{V}_{\mathrm{DD}} / 2$

Observe Case 3 provides expression for $\mathrm{V}_{\text {TRIP }}$

Summary: $\quad V_{T R I P}=\frac{V_{D D}}{2} \quad \begin{aligned} & \text { sizing } \\ & \text { strategy }\end{aligned}$

$$
\begin{aligned}
& \mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\text {min }} \\
& \mathrm{W}_{1}=\mathrm{W}_{\text {MIN }} \\
& \mathrm{W}_{2}=\frac{\mu_{n}}{\mu_{p}} \mathrm{~W}_{\text {MIN }} \simeq 3 \mathrm{~W}_{\text {MIN }}
\end{aligned}
$$

(dependent upon assumption $\mathrm{V}_{\mathrm{Tp}}=-\mathrm{V}_{\mathrm{Tn}}$)

Extension of Basic CMOS Inverter to Multiple-Input Gates

Performs as a 2-input NOR Gate

Can be easily extended to an n-input NOR Gate
$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{L}}=0$ (inherited from inverter analysi;)

analysis not shown here but
straightforward and consistent with
claim that performance of gates in
logic family determined by those of
basic inverter

Extension of Basic CMOS Inverter to Multiple-Input Gates

Performs as a 2-input NAND Gate
Can be easily extended to an n-input NAND Gate

$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{L}}=0$ (inherited from inverter analysis)

Static CMOS Logic Family

Observe PUN is \mathbf{p}-channel, PDN is \mathbf{n}-channel
$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{L}}=0$ (inherited from inverter analysis)

Static CMOS Logic Family

n-channel PDN and p-channel PUN
$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{OV}$ (same as for inverter!)

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter
Static CMOS Logic Gates
Ratio Logic

- Propagation Delay

Simple analytical models

- FI/OD
- Logical Effort
- Elmore Delay

Sizing of Gates

- The Reference Inverter
done
partial
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

General Logic Family

Compound Gate in CMOS Process
p-channel PUN
n-channel PDN

Arbitrary PUN and PDN
$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{OV}$ (same as for inverter!)

Other MOS Logic Families

Enhancement Load NMOS

Enhancement Load
Pseudo-NMOS

Depletion Load NMOS

Other CMOS/MOS Logic Families

Enhancement
Load NMOS

NMOS example

Enhancement
Load NMOS

VTH
W1/L1
W2/L2
VDD

Inverter Pair

NMOS example

Inverter Pair

$\mathrm{V}_{\mathrm{H}}=4 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}=0.55 \mathrm{~V}$
$\mathrm{V}_{\text {TRIP }}=2 \mathrm{~V}$

Other CMOS/MOS Logic Families

- High and low swings are reduced
- Response time is slow on LH output transitions
- Static Power Dissipation Large when $\mathrm{V}_{\text {OUt }}$ is low (wills sl
- Very economical process
- Termed "ratio logic" (because logic values dependent on device W/L ratios - USE UP DOF!)
- May not work for some device sizes
- Compact layout (no wells !)
- Can use very low cost process
- Available to use in standard CMOS process

Other CMOS/MOS Logic Families

- Multiple-input gates require single transistor for each additional input

k-input NAND
- Still useful if many inputs are required
(will be shown that static power does not increase with k)

Other CMOS/MOS Logic Families

- High and low swings are reduced
- Response time is slow on LH output transitions
- Static Power Dissipation Large when $\mathrm{V}_{\text {out }}$ is low
- Multiple-input gates require single transistor for each additional input
- Termed "ratio" logic
- Available to use in standard CMOS process

Other CMOS/MOS Logic Families

- Low swing is degraded
- Static Power Dissipation Large when $\mathrm{V}_{\text {out }}$ is low

Depletion
Load NMOS

- Very economical process
- Better than Enhancement Load NMOS
- Termed "ratio" logic
- Compact layout (no wells !)
- Slow on L-H output transitions (but not as slow as previoo (ic)
- Dominant MOS logic until about 1985
- Depletion device not available in most processes today

Other CMOS/MOS Logic Families

 basic operation

- Shallow slope at $\mathrm{V}_{\text {TRIP }}$

Other CMOS/MOS Logic Families

Enhancement Load Enhancement Load ${ }^{V_{p o}}$ Pseudo-NMOS

- Reduced $\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}$ Pseudo-NMOS

- Device sizing critical for even basic operation (DOF)
- Shallow slope at $\mathrm{V}_{\text {TRIP }}$

Other CMOS/MOS Logic Families

- Reduced $\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}$
- Device sizing critical for even basic operation

- Shallow slope at $\mathrm{V}_{\text {TRIP }}$

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter
Static CMOS Logic Gates
Ratio Logic
Propagation Delay

- Simple analytical models
- FI/OD
- Logical Effort
- Elmore Delay

Sizing of Gates

- The Reference Inverter
done
partial
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

Static Power Dissipation in Static CMOS Family

Thus, $\mathrm{P}_{\text {Static }}=0$

This is a key property of the static CMOS Logic Family \rightarrow the major reason Static CMOS Logic is so dominant

It can be shown that this zero static power dissipation property can be preserved if the PUN is comprised of p -channel devices, the PDN is comprised of n -channel devices and they are never both driven into the conducting states at the same time

Static Power Dissipation in Ratio Logic Families

Example:

Enhancement Load NMOS

Assume $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}=1 \mathrm{~V}, \mu \mathrm{C}_{\mathrm{ox}}=10^{-4} \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~W}_{1} / \mathrm{L}_{1}=1$ and M_{2} sized so that V_{L} is close to $V_{T n}$

Observe:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Tn}} \\
& \text { If } \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{L}} \text { so } \\
& \mathrm{I}_{\mathrm{D} 1}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{1}}{\mathrm{~L}_{1}}\left(\mathrm{~V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{T}}-\frac{\mathrm{V}_{\mathrm{DS} 1}}{2}\right) \mathrm{V}_{\mathrm{DS} 1} \\
& \mathrm{I}_{\mathrm{D} 1}=10^{-4}\left(5-1-1-\frac{1}{2}\right) \cdot 1=0.25 \mathrm{~mA} \\
& \mathrm{P}_{\mathrm{L}}=(5 \mathrm{~V})(0.25 \mathrm{~mA})=1.25 \mathrm{~mW}
\end{aligned}
$$

Static Power Dissipation in Ratio Logic Families

Example:

Enhancement Load NMOS

Assume $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
$V_{T}=1 \mathrm{~V}, \mu \mathrm{C}_{\mathrm{ox}}=10^{-4} \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~W}_{1} / \mathrm{L}_{1}=1$ and M_{2} sized so that V_{L} is close to V_{Tn}

$$
P_{\mathrm{L}}=(5 \mathrm{~V})(0.25 \mathrm{~mA})=1.25 \mathrm{~mW}
$$

If a circuit has 100,000 gates and half of them are in the $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{L}}$ state, the static power dissipation will be

Static Power Dissipation in Ratio Logic Families

Example:

Enhancement Load NMOS

Assume $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}=1 \mathrm{~V}, \mu \mathrm{C}_{\mathrm{ox}}=10^{-4} \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~W}_{1} / \mathrm{L}_{1}=1$ and M_{2} sized so that V_{L} is close to $\mathrm{V}_{\mathrm{T} \text { n }}$

$$
P_{\mathrm{L}}=(5 \mathrm{~V})(0.25 \mathrm{~mA})=1.25 \mathrm{~mW}
$$

If a circuit has 100,000 gates and half of them are in the $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{L}}$ state, the static power dissipation will be

$$
P_{\text {STATIC }}=\frac{1}{2} 10^{5} \cdot 1.25 \mathrm{~mW}=\mathbf{6 2 . 5 W}
$$

This power dissipation is way too high and would be even larger in circuits with 100 million or more gates - the level of integration common in SoC circuits today

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter
Static CMOS Logic Gates
Ratio Logic
Propagation Delay
Simple analytical models

- FI/OD
- Logical Effort
- Elmore Delay

Sizing of Gates

- The Reference Inverter
done
partial
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)

Propagation Delay in Static CMOS Family

Since conducting transistor operating in triode through most of transition:

$$
\begin{aligned}
& I_{D} \cong \frac{\mu C_{O X} W}{L}\left(V_{G S}-V_{T}-\frac{V_{D S}}{2}\right) V_{D S} \cong \frac{\mu C_{O X} W}{L}\left(V_{G S}-V_{T}\right) V_{D S} \\
& R_{P D}=\frac{V_{D S}}{I_{D}}=\frac{L_{1}}{\mu_{n} C_{o x} W_{1}\left(V_{D D}-V_{T n}\right)} \\
& R_{P U}=\frac{V_{D S}}{I_{D}}=\frac{L_{2}}{\mu_{\mathrm{p}} C_{O X} W_{2}\left(V_{D D}+V_{T p}\right)} \\
& \mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\mathrm{ox}}\left(\mathrm{~W}_{1} \mathrm{~L}_{1}+\mathrm{W}_{2} \mathrm{~L}_{2}\right)
\end{aligned}
$$

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

$$
\begin{aligned}
& R_{P D}=\frac{L_{1}}{\mu_{n} C_{o x} W_{1}\left(V_{D D}-V_{T n}\right)} \\
& R_{P U}=\frac{L_{2}}{\mu_{p} C_{o X} W_{2}\left(V_{D D}+V_{T p}\right)} \\
& C_{\text {IN }}=C_{o x}\left(W_{1} L_{1}+W_{2} L_{2}\right)
\end{aligned}
$$

Example: Minimum-sized M_{1} and M_{2}

If $u_{n} C_{O X}=100 \mu A V^{-2}, C_{O X}=4 f F \mu^{-2}, V_{T n}=V_{D D} / 5, V_{T P}=-V_{D D} / 5, \mu_{n} / \mu_{p}=3, L_{1}=W_{1}=L_{M I N}$,
$\mathrm{L}_{2}=\mathrm{W}_{2}=\mathrm{L}_{\mathrm{MIN}}, \mathrm{L}_{\mathrm{MIN}}=\mathbf{0 . 5 \mu}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (Note: This $\mathrm{C}_{\text {ox }}$ is somewhat larger than that in the 0.5 u on process)

$$
\begin{aligned}
\mathrm{R}_{\mathrm{PD}} & =\frac{1}{10^{-4} \cdot 0.8 \mathrm{~V}_{\mathrm{DD}}}=2.5 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{IN}}=4 \bullet 10^{-15} \cdot 2 \mathrm{~L}_{\mathrm{MIN}}^{2}=2 \mathrm{fF} \\
\mathrm{R}_{\mathrm{PU}} & =\frac{1}{10^{-4} \cdot \frac{1}{3} \cdot 0.8 \mathrm{~V}_{\mathrm{DD}}}=7.5 \mathrm{~K} \Omega
\end{aligned}
$$

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

In typical process with Minimum-sized M_{1} and M_{2} :

$R_{P D} \cong 2.5 K \Omega$
$R_{P U} \cong 3 R_{P D}=7.5 \mathrm{~K} \Omega$
$\mathrm{C}_{\mathrm{IN}} \cong 2 \mathrm{fF}$

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

In typical process with Minimum-sized \mathbf{M}_{1} and \mathbf{M}_{2} :

$$
R_{P D} \cong 2.5 \mathrm{~K} \Omega
$$

$$
\mathrm{R}_{\mathrm{PU}} \cong 3 \mathrm{R}_{\mathrm{PD}}=7.5 \mathrm{~K} \Omega
$$

$$
\mathrm{C}_{\mathrm{IN}} \cong 2 \mathrm{fF}
$$

How long does it take for a signal to propagate from x to y ?

Propagation Delay in Static CMOS Family

(Review from earlier discussions)
Consider:
For HL output transition, C_{L} charged to V_{DD}

Ideally:

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

For HL output transition, C_{L} charged to V_{DD}

What is the transition time t_{HL} ?

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

$$
\mathbf{V}_{\text {OUT }}(\mathbf{t})=\mathbf{F}+(\mathbf{I}-\mathbf{F}) \mathbf{e}^{\frac{-\mathbf{t}}{\tau}}=\mathbf{0}+\left(\mathbf{V}_{\mathrm{DD}}-\mathbf{0}\right) e^{-\frac{\mathbf{t}}{\mathrm{R}_{\mathrm{PD}} \mathrm{C}_{\mathrm{L}}}}
$$

$$
\frac{V_{D D}}{e}=V_{D D} e^{-\frac{t_{1}}{R_{P D} C_{\mathrm{L}}}}
$$

$$
\mathbf{t}_{1}=\mathbf{R}_{\mathrm{PD}} \mathbf{C}_{\mathrm{L}}
$$

If $V_{T R I P}$ is close to $V_{D D} / 2, t_{H L}$ is close to t_{1}

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

For HL output transition, C_{L} charged to V_{DD}

$$
t_{L H} \cong t_{2}=R_{P U} C_{L}
$$

Summary: $\quad t_{L H} \cong R_{P U} C_{L}$

$$
t_{H L} \cong R_{P D} C_{L}
$$

For $\mathrm{V}_{\text {TRIP }}$ close to $\mathrm{V}_{\mathrm{DD}} / \mathbf{2}$

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

In typical process with Minimum-sized M_{1} and M_{2} :

$$
\begin{aligned}
& t_{H L} \cong R_{P D} C_{L} \cong 2.5 \mathrm{~K} \cdot 2 \mathrm{fF}=5 \mathrm{ps} \\
& \mathrm{t}_{\mathrm{LH}} \cong \mathrm{R}_{\mathrm{PU}} \mathrm{C}_{\mathrm{L}} \cong 7.5 \mathrm{~K} \cdot 2 \mathrm{fF}=15 \mathrm{ps}
\end{aligned}
$$

(Note: This C_{ox} is somewhat larger than that in the 0.5 u ON process)
Note: LH transition is much slower than HL transition

Propagation Delay in Static CMOS Family

Defn: The Propagation Delay of a gate is defined to be the sum of t_{HL} and $t_{L H}$, that is, $t_{\text {PROP }}=t_{H L}+t_{L H}$

$$
t_{\text {PROP }}=t_{H L}+t_{L H} \cong C_{L}\left(R_{P U}+R_{P D}\right)
$$

Propagation delay represents a fundamental limit on the speed a gate can be clocked at

For basic two-inverter cascade in static 0.5um CMOS logic driving an identical device

Propagation Delay in Static CMOS Family

$$
\begin{gathered}
t_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{HL}}+\mathrm{t} \mathrm{LH} \cong \mathrm{C}_{\mathrm{L}}\left(\mathrm{R}_{\mathrm{PU}}+\mathrm{R}_{\mathrm{PD}}\right) \\
\mathbf{R}_{\mathrm{PD}}=\frac{L_{1}}{\mu_{\mathrm{n}} \mathbf{C}_{\mathrm{ox}} \mathbf{W}_{1}\left(V_{\mathrm{DD}}-V_{\mathrm{Tn}}\right)} \quad \mathbf{R}_{\mathrm{PU}}=\frac{L_{2}}{\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}} W_{2}\left(V_{\mathrm{DD}}+V_{\mathrm{TP}}\right)} \quad \mathbf{C}_{\text {IN }}=\mathbf{C}_{\mathrm{ox}}\left(\mathbf{W}_{1} L_{1}+W_{2} L_{2}\right)
\end{gathered}
$$

If $\mathrm{V}_{T n}=-\mathrm{V}_{\mathrm{TP}}=\mathrm{V}_{\mathrm{T}}$ and if $\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\text {IN }}$

$$
\begin{aligned}
& t_{\text {PROP }}=C_{o x}\left(W_{1} L_{1}+W_{2} L_{2}\right)\left(\frac{L_{1}}{\mu_{n} C_{o x} W_{1}\left(V_{D D}-V_{T}\right)}+\frac{L_{2}}{\mu_{p} C_{o x} W_{2}\left(V_{D D}-V_{T}\right)}\right) \\
& \text { If } L_{2}=L_{1}=L_{\text {min }}, \mu_{n}=3 \mu_{p}, \\
& t_{\text {PROP }}=\frac{L_{\text {min }}^{2}}{\mu_{n}\left(V_{D D}-V_{T}\right)}\left(W_{1}+W_{2}\right)\left(\frac{1}{W_{1}}+\frac{3}{W_{2}}\right)=\frac{L_{\text {min }}^{2}}{\mu_{n}\left(V_{D D}-V_{T}\right)}\left(4+\frac{W_{2}}{W_{1}}+3 \frac{W_{1}}{W_{2}}\right)
\end{aligned}
$$

Note speed is a function of device sizing !

Can $t_{\text {prop }}$ be minimized?

Propagation Delay in Static CMOS Family

For $\quad L_{2}=L_{1}=L_{\min }, \mu_{n}=3 \mu_{p}$,

$$
t_{\text {PROP }}=\frac{L_{\text {min }}^{2}}{\mu_{n}\left(V_{D D}-V_{T}\right)}\left(4+\frac{W_{2}}{W_{1}}+3 \frac{W_{1}}{W_{2}}\right)
$$

Can $t_{\text {Prop }}$ be minimized?

Assume $\mathrm{W}_{1}=\mathrm{W}_{\text {MIN }}$

$$
\begin{aligned}
& \frac{\partial t_{\text {PROP }}}{\partial \mathrm{W}_{2}}=\left[\frac{\mathrm{L}_{\text {min }}^{2}}{\mu_{\mathrm{n}}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{TH}}\right)}\right]\left[\frac{1}{\mathrm{~W}_{\mathrm{MIN}}}-3 \frac{\mathrm{~W}_{\text {MIN }}}{\mathrm{W}_{2}^{2}}\right]=0 \\
& \frac{1}{\mathrm{~W}_{\text {MIN }}}-3 \frac{\mathrm{~W}_{\text {MIN }}}{\mathrm{W}_{2}^{2}}=0 \\
& \mathrm{~W}_{2}=\sqrt{3} \mathrm{~W}_{\text {MIN }} \\
& t_{\text {PROP }}=\frac{L_{\text {min }}^{2}}{\mu_{n}\left(V_{D D}-V_{T}\right)}(4+2 \sqrt{3}) \cong \frac{L_{\text {min }}^{2}}{\mu_{n}\left(V_{D D}-V_{T}\right)}(7.5)
\end{aligned}
$$

Propagation Delay in Static CMOS Family

$$
t_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{HL}}+\mathrm{t} \mathrm{LH} \cong \mathrm{C}_{\mathrm{L}}\left(\mathrm{R}_{\mathrm{PU}}+\mathrm{R}_{\mathrm{PD}}\right)
$$

If $\mathrm{V}_{\mathrm{Tn}}=-\mathrm{V}_{\mathrm{Tp}}=\mathrm{V}_{\mathrm{T}}$ and $\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\text {IN }}$
For min size:

$$
\begin{aligned}
& \mathrm{t}_{\text {PROP }}=\mathrm{C}_{\mathrm{ox}}\left(\mathrm{~W}_{1} L_{1}+\mathrm{W}_{2} \mathrm{~L}_{2}\right)\left(\frac{\mathrm{L}_{1}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{Ox}} \mathrm{~W}_{1}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{T}\right)}+\frac{\mathrm{L}_{2}}{\mu_{\mathrm{P}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{2}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{T}}\right)}\right) \\
& \text { If } \mathrm{L}_{2}=\mathrm{L}_{1}=\mathrm{L}_{\text {min }}, \mathrm{W}_{1}=\mathrm{W}_{2}=\mathrm{W}_{\text {min }}, \mu_{n}=3 \mu_{p}, \\
& \mathrm{t}_{\text {PROP }}=\frac{\mathrm{L}_{\text {min }}^{2}}{\mu_{\mathrm{n}}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{T}}\right)}\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)\left(\frac{1}{\mathrm{~W}_{1}}+\frac{3}{\mathrm{~W}_{2}}\right)=\frac{\mathrm{L}_{\text {min }}^{2}}{\mu_{n}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{T}\right)}\left(2 \mathrm{~W}_{\text {min }}\right)\left(\frac{1}{\mathrm{~W}_{\text {min }}}+\frac{3}{\mathrm{~W}_{\text {min }}}\right)
\end{aligned}
$$

For min size:

$$
\begin{array}{r}
\mathrm{W}_{2}=\mathrm{W}_{1}=\mathrm{W}_{\text {min }} \\
\mathrm{t}_{\text {PROP }}=\frac{8 \mathrm{~L}_{\text {min }}^{2}}{\mu_{\mathrm{n}}\left(\mathrm{~V}_{\text {DO }} \mathrm{V}_{\mathrm{T}}\right)}
\end{array}
$$

Propagation Delay in Static CMOS Family

$$
t_{\text {PROP }}=t_{H L}+t_{L H} \cong C_{L}\left(R_{P U}+R_{P D}\right)
$$

If $\mathrm{V}_{\mathrm{Tn}}=-\mathrm{V}_{\mathrm{Tp}}=\mathrm{V}_{\mathrm{T}}$ and $\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\text {IN }}$
For equal rise/fall:

$$
\begin{aligned}
& \mathrm{t}_{\text {PROP }}=\mathrm{C}_{\text {Ox }}\left(\mathrm{W}_{1} \mathrm{~L}_{1}+\mathrm{W}_{2} \mathrm{~L}_{2}\right)\left(\frac{\mathrm{L}_{1}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \mathrm{~W}_{1}\left(\mathrm{~V}_{\text {DD }}-\mathrm{V}_{T}\right)}+\frac{\mathrm{L}_{2}}{\mu_{\mathrm{P}} \mathrm{C}_{\mathrm{Ox}} \mathrm{~W}_{2}\left(\mathrm{~V}_{\text {DD }}-\mathrm{V}_{\mathrm{T}}\right)}\right) \\
& \text { If } \mathrm{L}_{2}=\mathrm{L}_{1}=\mathrm{L}_{\text {min }}, \mathrm{W}_{1}=\mathrm{W}_{\text {min }}, \mu_{n}=3 \mu_{p}, \\
& \mathrm{t}_{\text {PROP }}=\frac{\mathrm{L}_{\text {min }}^{2}}{\mu_{n}\left(\mathrm{~V}_{\text {Do }}-\mathrm{V}_{\mathrm{T}}\right)}\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)\left(\frac{1}{\mathrm{~W}_{1}}+\frac{3}{\mathrm{~W}_{2}}\right) \quad \square \mathrm{W}_{2}=3 \mathrm{~W}_{1}
\end{aligned}
$$

For equal rise/fall:

$$
\begin{gathered}
\mathrm{W}_{2}=3 \mathrm{~W}_{1} \\
\mathrm{t}_{\text {PROP }}=\frac{8 \mathrm{~L}_{\text {min }}^{2}}{\mu_{n}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{T}}\right)}
\end{gathered}
$$

Propagation Delay in Static CMOS Family

$$
t_{\text {PROP }}=t_{H L}+t_{L H} \cong C_{L}\left(R_{P U}+R_{P D}\right)
$$

Summary:
If $\mathrm{V}_{\mathrm{Tn}}=-\mathrm{V}_{\mathrm{Tp}}=\mathrm{V}_{\mathrm{T}}$ and $\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathbb{N}}$ and $L_{2}=L_{1}=L_{\min }, \mu_{n}=3 \mu_{p}$,

For min size:
$\mathrm{W}_{2}=\mathrm{W}_{1}=\mathrm{W}_{\text {min }}$
$t_{\text {PROP }}=\frac{8 L_{\text {min }}^{2}}{\mu_{\mathrm{n}}\left(\mathrm{V}_{\mathrm{DD}}-V_{\mathrm{T}}\right)}$

For equal rise/fall:
$W_{2}=3 W_{1}$
$t_{\text {Prop }}=\frac{8 L_{\text {min }}^{2}}{\mu_{n}\left(V_{\text {Do }}-V_{T}\right)}$

For min delay:

$$
\begin{gathered}
\mathrm{W}_{2}=\sqrt{3} \mathrm{~W}_{1} \\
\mathrm{t}_{\text {PRoP }}=\frac{(4+2 \sqrt{3}) \mathrm{L}_{\text {min }}^{2}}{\mu_{\mathrm{n}}\left(\mathrm{~V}_{\text {oD }}-V_{T}\right)} \quad(4+2 \sqrt{3}) \cong 7.5
\end{gathered}
$$

Propagation Delay About the Same for 3 Sizing Strategies

Propagation Delay in Static CMOS Family

The propagation delay through k levels of logic is approximately the sum of the individual propagation delays in the same path

Propagation Delay in Static CMOS Family

Example:

$$
\begin{aligned}
& t_{\mathrm{HL}}=\mathrm{t}_{\mathrm{HL} 4}+\mathrm{t}_{\mathrm{LH} 3}+\mathrm{t}_{\mathrm{HL} 2}+\mathrm{t}_{\mathrm{LH} 1} \\
& \mathrm{t}_{\mathrm{LH}}=\mathrm{t}_{\mathrm{LH} 4}+\mathrm{t}_{\mathrm{HL} 3}+\mathrm{t}_{\mathrm{LH} 2}+\mathrm{t}_{\mathrm{HL} 1} \\
& \mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{LH}}+\mathrm{t}_{\mathrm{HL}}=\left(\mathrm{t}_{\mathrm{LH} 4}+t_{\mathrm{HL} 3}+t_{\mathrm{LH} 2}+\mathrm{t}_{\mathrm{HL} 1}\right)+\left(\mathrm{t}_{\mathrm{HL} 4}+t_{\mathrm{LH} 3}+t_{\mathrm{HL} 2}+t_{\mathrm{LH} 1}\right) \\
& t_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{LH}}+\mathrm{t}_{\mathrm{HL}}=\left(\mathrm{t}_{\mathrm{LH} 4}+\mathrm{t}_{\mathrm{HL} 4}\right)+\left(\mathrm{t}_{\mathrm{LH} 3}+\mathrm{t}_{\mathrm{HL} 3}\right)+\left(\mathrm{t}_{\mathrm{LH} 2}+\mathrm{t}_{\mathrm{HL} 2}\right)+\left(\mathrm{t}_{\mathrm{LH} 1}+\mathrm{t}_{\mathrm{HL} 1}\right) \\
& \mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{PROP} 4}+\mathrm{t}_{\mathrm{PROP} 3}+\mathrm{t}_{\mathrm{PROP} 2}+\mathrm{t}_{\mathrm{PROP} 1}
\end{aligned}
$$

Propagation Delay in Static CMOS Family

Propagation through k levels of logic

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{HL}} \cong \mathrm{t}_{\mathrm{HLk}}+\mathrm{t}_{\mathrm{LH}(\mathrm{k}-1)}+\mathrm{t}_{\mathrm{HL}(\mathrm{k}-2)}+\cdots+\mathrm{t}_{\mathrm{XY} 1} \\
& \mathrm{t}_{\mathrm{LH}} \cong \mathrm{t}_{\mathrm{LHk}}+\mathrm{t}_{\mathrm{HL}(\mathrm{k}-1)}+\mathrm{t}_{\mathrm{LH}(\mathrm{k}-2)}+\cdots+\mathrm{t}_{\mathrm{YX}}
\end{aligned}
$$

where $X=H$ and $Y=L$ if k odd and $X=L$ and $Y=h$ if k even

$$
\mathrm{t} \mathrm{PROP}=\sum_{i=1}^{k} \mathrm{t} \text { PROPk }
$$

Stay Safe and Stay Healthy !

End of Lecture 39

